Energy spectrum of a q-analogue of the hydrogen atom

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 26 L365
(http://iopscience.iop.org/0305-4470/26/7/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 21:01

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Energy spectrum of a q-analogue of the hydrogen atom

Qin-Gzhu Yang \dagger and Bo-Wei Xu
\dagger Department of Physics, Shanghai Teachers University, Shanghai 200234, People's Republic of China
\$ Department of Physics, Shanghai Jiaotong University, Shanghai 200030, People's Republic of China

Received 16 January 1993

Abstract

The $S O q(4)$ quantum algebra is used for the description of a q-analogue of the hydrogen atom. The energy spectrum and degeneracy of a q-analogue of the hydrogen atom is obtained with q being real or a phase.

Recently, the problems of the q-analogue of the hydrogen atom have been discussed [7]. In this work we apply the ks transformation to the hydrogen atom in \mathbb{R}^{3} and obtain a harmonic oscillator in \mathbb{R}^{4}. However, it is well known that the hydrogen atom with symmetry group $S O$ (4) satisfies a constraint condition. Thus, the hydrogen atom in \mathbb{R}^{3} corresponds to a pair of coupled two-dimensional harmonic oscillators in \mathbb{R}^{4} when we use the $S O q(4) \sim[S U q(2) \times S U q(2)]$ to describe the q-analogue of the hydrogen atom plus, also, a constraint condition. Using this condition, one can obtain a more reasonable result.

It is well known that the Hamiltonian

$$
\begin{equation*}
H=\frac{-\hbar^{2}}{2 \mu} \nabla^{2}-\frac{e^{2}}{r} \tag{1}
\end{equation*}
$$

for the three-dimensional hydrogen atom commutes with the orbital angular-momentum \boldsymbol{L} and the Lentz vector \boldsymbol{A}. Further, \boldsymbol{L} and \boldsymbol{A} satisfy the following relation

$$
\begin{equation*}
L \cdot A=A \cdot L=0 \tag{2}
\end{equation*}
$$

The components of L and A generate the Lie algebra SO_{4}. By introducing

$$
\begin{equation*}
J=\frac{L+A}{2} \quad K=\frac{L-A}{2} \tag{3}
\end{equation*}
$$

the Lie algebra of SO_{4} can be rewritten as $\mathrm{SO}_{3, J} \times \mathrm{SO}_{3, \mathrm{~K}}$, namely,

$$
\begin{array}{lr}
{\left[J_{z}, J_{ \pm}\right]= \pm J_{ \pm}} & {\left[J_{+}, J_{-}\right]=2 J z} \\
{\left[K z, K_{ \pm}\right]= \pm K_{ \pm}} & {\left[K_{+}, K_{-}\right]=2 K z} \tag{5}
\end{array}
$$

which can be put into the Jordan-Schwinger form by means of a set of four independent boson operators:

$$
\begin{array}{llr}
J_{+}=a_{1}^{+} a_{2} & J_{-}=a_{2}^{+} a_{1} & 2 J z=a_{1}^{+} a_{1}-a_{2}^{+} a_{2} \\
K_{+}=a_{3}^{+} a_{4} & K_{-}=a_{4}^{+} a_{3} & 2 K z=a_{3}^{+} a_{3}-a_{4}^{+} a_{4} \tag{7}
\end{array}
$$

where

$$
\begin{equation*}
\left[a_{i}, a_{j}^{+}\right]=\delta_{i j} \quad\left[a_{i}, a_{j}\right]=\left[a_{i}^{+}, a_{j}^{+}\right]=0 \tag{8}
\end{equation*}
$$

It is well known that the Kastaanheimo-Stiefel transformation has been employed to transform the three-dimensional hydrogen atom problem into a four-dimensional oscillator with the Hamiltonian

$$
\begin{equation*}
\mathscr{H}=\frac{1}{2} \hbar \omega \sum_{j=1}^{4}\left(a_{j}^{+} a_{j}+a_{j} a_{j}^{+}\right) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega=(-E / 2 \mu)^{1 / 2} \tag{10}
\end{equation*}
$$

The energies of four-dimensional harmonic oscillator are given by

$$
\begin{equation*}
\varepsilon=\hbar \omega\left(n_{1}+n_{2}+n_{3}+n_{4}+2\right)=2 n \hbar \omega=e^{2} . \tag{11}
\end{equation*}
$$

Equation (2) can be transcribed in terms of the boson operators. This yields

$$
\begin{equation*}
\left(a_{1}^{+} a_{1}+a_{2}^{+} a_{2}+1\right)^{2}=\left(a_{3}^{+} a_{3}+a_{4}^{+} a_{4}+1\right)^{2} \tag{12}
\end{equation*}
$$

a result which shows indeed that the four-dimensional harmonic oscillator of energy ε can split into a pair of two-dimensional harmonic oscillators of energy ($n_{1}+n_{2}+$ 1) $\hbar \omega=\left(n_{3}+n_{4}+1\right) \hbar \omega$. Thus, from equation (11), one finally can recover the discrete spectrum of H

$$
\begin{equation*}
E=-\frac{\mu e^{4}}{2 n^{2} \hbar^{2}} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
n=n_{1}+n_{2}+1 \tag{14}
\end{equation*}
$$

For the q-analogue of the hydrogen atom, we also require that equation (2) is given by

$$
\begin{equation*}
L q \cdot A q=A q \cdot L q=0 \tag{15}
\end{equation*}
$$

The components of $L q$ and $A q$ generate the quantum algebra $S O q(4) \sim$ $[S U q(2) \times S U q(2)]$. By introducing

$$
\begin{equation*}
J=(L q+A q) / 2 \quad K=(L q-A q) / 2 \tag{16}
\end{equation*}
$$

The quantum algebra $S O q(4)$ can be rewritten as $\left[S U_{2, J}\right] q \times\left[S U_{2, K}\right] q$, namely,

$$
\begin{array}{lr}
{\left[J_{0}, J_{ \pm}\right]= \pm J_{ \pm}} & {\left[J_{+}, J_{-}\right]=\left[2 J_{0}\right]} \\
{\left[K_{0}, K_{ \pm}\right]= \pm K_{ \pm}} & {\left[K_{+}, K_{-}\right]=\left[2 K_{0}\right]} \\
J^{2}=J_{-} J_{+}+\left[J_{0}\right]\left[J_{0}+1\right] & K^{2}=K_{-} K_{+}+\left[K_{0}\right]\left[K_{0}+1\right] \tag{19}
\end{array}
$$

where q-numbers are defined by

$$
\begin{equation*}
[x]=\left(q^{x}-q^{-x}\right) /\left(q-q^{-1}\right) \tag{20}
\end{equation*}
$$

If q is real ($q=\mathrm{e}^{\eta}$ where η is real), q-numbers take the form

$$
\begin{equation*}
[x]=\sinh (\eta x) / \sinh \eta \tag{21}
\end{equation*}
$$

while in the case where q is a phase ($q=\mathrm{e}^{\mathrm{i} \eta}$ with η real), q-numbers are

$$
\begin{equation*}
[x]=\sin (\eta x) / \sin \eta \tag{22}
\end{equation*}
$$

in the limit $q \rightarrow 1$, relations (17) and (18) tend to the classical case (4) and (5). Further, starting from equation (15) one can obtain

$$
\begin{equation*}
J^{2}=K^{2} . \tag{23}
\end{equation*}
$$

It has been pointed out [1,2] that the quantum $S U q(2)$ algebra relations can be realized by introducing a q-analogue to the harmonic oscillator with q-creation operator a_{q}^{+}, q-annihilation operator a_{q} and number operator $N q$ satisfying

$$
\begin{equation*}
\left[a_{q}, a_{q}^{+}\right]=[N q+1]-[N q] . \tag{24}
\end{equation*}
$$

A q-boson vacuum $|0\rangle_{q}$ defined by $a_{q}|0\rangle_{q}=0$ and the n-quanta eigenstates $|n\rangle_{q}$ are obtained

$$
\begin{equation*}
|n\rangle_{q}=\frac{\left(a_{q}^{+}\right)^{n}}{[n]!^{1 / 2}}|0\rangle_{q} \tag{25}
\end{equation*}
$$

with

$$
\begin{align*}
& N q|n\rangle_{q}=n|n\rangle_{q} \tag{26}\\
& a_{q}^{+}|n\rangle_{q}=[n+1]^{1 / 2}|n+1\rangle_{q} \tag{27}\\
& a_{q}|n\rangle_{q}=[n]^{1 / 2}|n-1\rangle_{q} \tag{28}
\end{align*}
$$

where $[n]!=[n][n-1] \ldots[2][1]$.
To realize (15) and (16), we define a set of four independent q-harmonic oscillator systems: $a_{i q}$ and $a_{1 q}^{+}$with $i=1,2,3,4$. Then we have:

$$
\begin{array}{lcr}
J_{+}=a_{1 q}^{+} a_{2 q} & J_{-}=a_{2 q}^{+} a_{1 q} & 2 J_{0}=N_{1 q}-N_{2 q} \\
K_{+}=a_{3 q}^{+} a_{4 q} & K_{-}=a_{4 q}^{+} a_{3 q} & 2 K_{0}=N_{3 q}-N_{4 q} . \tag{30}
\end{array}
$$

Equation (23) can be transcribed in terms of the q-boson operators. Now, the fourdimensional q-analogue harmonic oscillator Hamiltonian is given by

$$
\begin{equation*}
\mathscr{X}_{q}=\frac{1}{2} \hbar \omega_{q}\left[\sum_{j=1}^{4}\left(a_{j q}^{+} a_{j q}+a_{j q} a_{j q}^{+}\right)\right] \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{q}=\left(-E_{q} / 2 \mu\right)^{1 / 2} \tag{32}
\end{equation*}
$$

E_{q} being the energy of a q-analogue of the hydrogen atom. The q-Hamiltonian operator \mathscr{H}_{q} is diagonal on the eigenstates $\left|n_{1}\right\rangle_{q}\left|n_{2}\right\rangle_{q}\left|n_{3}\right\rangle_{q}\left|n_{4}\right\rangle_{q}$ and has the eigenvalues

$$
\begin{equation*}
\varepsilon_{q}\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=\frac{1}{2} \hbar \omega_{q} \sum_{j=1}^{4}\left(\left[n_{j}+1\right]+\left[n_{j}\right]\right)=e^{2} \tag{33}
\end{equation*}
$$

According to (32), we can obtain the energy of a q-analogue of the hydrogen atom

$$
\begin{equation*}
E_{q}=\frac{-\mu e^{4}}{2 \hbar^{2}\left\{\frac{1}{2} \Sigma_{j=1}^{4}\left(\left[n_{j}+1\right]+\left[n_{j}\right]\right) / 2\right\}^{2}} \tag{34}
\end{equation*}
$$

It is interesting to check how (34) is related to (13). This can be done by replacing the q-numbers in (34) by their equals from (21) (or (22)), subsequently taking the Tayler expansions of the hyperbolic (or trigonometric) functions. In the limit $q \rightarrow 1$, (34) reduce to (13). In the case of real q, the energy spectrum of a q-analogue of the hydrogen atom is above that of the hydrogen atom. While q is a phase, the result is more complicated.

Equation (23) shows that the spectrum of a q-analogue of the hydrogen atom is subjected to the constraint condition

$$
\begin{equation*}
\left[n_{1}\right]+\left[n_{2}\right]=\left[n_{3}\right]+\left[n_{4}\right] . \tag{35}
\end{equation*}
$$

In obtaining equation (35), we also have to consider the alternative expression of $K_{ \pm}$, K_{0} in which the subscripts of the q-boson operators are exchanged $3 \leftrightarrow 4$. According to equation (34), the spectrum of the q-analogue hydrogen atom with quantum number $n\left(n=n_{1}+n_{2}+1\right)$ can have several levels. If n is even, the number of levels is $n^{2} / 4$ and the degeneracy of each of the levels is four. If n is odd, the number of levels is the integral of $n^{2} / 4$ and one remainder, e.g. $n=3$ having three levels, $n=5$ having seven levels. In this case, the degeneracy of all levels, except that for one remainder being single, is four. The spectrum and degeneracy of a q-analogue of the hydrogen atom is different from that of the hydrogen atom.

References

[1] Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873
[2] Macfarlane A J 1989 J. Phys. A: Math. Gen. 224581
[3] Song X C 1990 J. Phys. A: Math. Gen. 23 L821
[4] Ng Y J 1990 J. Phys. A: Math. Gen. 231023
[5] Gerry C C 1986 Phys. Rev. A 336
[6] Chen A C 1980 Phys. Rev. A 22 333, 2901
[7] Kibler M and Négadi T 1991 J. Phys. A: Math. Gen. 245283

