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Abstract. The SOq(4) quantum algebra is used for the description of a panalogue of the 
hydrogen atom. The energy spectrum and degeneracy of a q-analogue of the hydrogen 
atom is obtained with q being real or a phase. 

Recently, the problems of the q-analogue of the hydrogen atom have been discussed 
[7]. In this work we apply the KS transformation to the hydrogen atom in R3 and 
obtain a harmonic oscillator in R4. However, it is well known that the hydrogen atom 
with symmetry group SO(4) satisfies a constraint condition. Thus, the hydrogen atom 
in R’ corresponds to a pair of coupled two-dimensional harmonic oscillators in R4 
when we use the SOq(4)-[SUq(2)xSUq(2)] to describe the q-analogue of the 
hydrogen atom plus, also, a constraint condition. Using this condition, one can obtain 
a more reasonable result. 

It is well known that the Hamiltonian 

for the three-dimensional hydrogen atom commutes with the orbital angular-momentum 
L and the Lentz vector A. Further, L and A satisfy the following relation 

L . A  = A.L=O. (2) 
The components of L and A generate the Lie algebra SO,. By introducing 

L -  A K=- L+ A J = -  
2 2 (3) 

the Lie algebra of SO, can be rewritten as SO3,, x namely, 

[ 32, J*] = J ,  [ J + ,  J _ ] = 2 J z  (4) 

[fi, K*I=*K, [ K,, K-] = 2Kz  (5) 
which can be put into the Jordan-Schwinger form by means of a set of four independent 
boson operators: 

J+ = a:a2 3-= ara, 2Jz=a:a,-a:a, (6 )  

K, = a:a, K- = aza, 2fi = a:a3 - ais, (7) 
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where 

1% 4 1  = 6, [a j ,  a,] = [a?, a:] = 0. (8) 
It is well known that the Kastaanheimo-Stiefel transformation has been employed to 
transform the three-dimensional hydrogen atom problem into a four-dimensional 
oscillator with the Hamiltonian 

where 

w = (-E/2p)”Z, 

The energies of four-dimensional harmonic oscillator are given by 

e = i i o (n ,  + n2 + n3 + n,+ 2) = 2niio = e’. (11) 

(n:a,+a:a2+1)’=(n:a3+n:a4+l)‘ (12) 

Equation (2) can be transcribed in terms of the boson operators. This yields 

a result which shows indeed that the four-dimensional harmonic oscillator of energy 
E can split into a pair of two-dimensional harmonic oscillators of energy ( n , + n 2 +  
1)hw = (n3+nL+ 1)ho. Thus, from equation ( l l ) ,  one finally can recover the discrete 
spectrum of H 

where 

n = n , + n 2 + l .  (14) 

For the q-analogue of the hydrogen atom, we also require that equation (2) is given by 

(15) 
The components of Lq and Aq generate the quantum algebra SOq(4)- 
[SUq(2) x SUq(2)I. By introducing 

J = ( L q + A q ) / 2  K (Lq - Aq) /2 .  (16) 

[ J o ,  JJ=*Jt [J+ ,  J-l=[2Jo1 (17) 

[ K o , K * ] = * K *  [ K + ,  K-I= DK01 (18) 
J 2  = J-J+ +[&I[ Jo+ 13 (19) 

[XI = (4s-Q-x)/(q-q-’). (20) 

[XI = sinh(Tx)/sinh 7 (21) 

[x] =sin( qx)/sin r)  (22) 

Lq.Aq = Aq-Lq = 0. 

The quantum algebra SOq(4) can be rewritten as [SU2,,]q x[SU2.,]q, namely, 

K 2 =  K - K +  + [Ko][Ko+ I]  

where q-numbers are defined by 

If q is real (q=en  where 17 is real), q-numbers take the form 

while in the case where q is a phase (q  = ein with 17 real), q-numbers are 
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in the limit q + 1, relations (17) and (18) tend to the classical case (4) and (5). Further, 
starting from equation (15 )  one can obtain 

J’ = K ~ .  (231 
It has been pointed out [l ,  21 that the quantum SUq(2) algebra relations can be 

realized by introducing a q-analogue to the harmonic oscillator with q-creation operator 
a:, q-annihilation operator a, and number operator Nq satisfying 

[a,, = W q +  Il-[Nql.  (24) 
A q-boson vacuum IO), defined by a910),=0 and the n-quanta eigenstates In), are 
obtained 

with 

Nqln), = 44 ,  (26) 

o:In), = [ n + ~ ] ’ / * l n +  I), (27) 

a,ln), = [n]’/’ln - I), (28) 

To realize (15) and (16), we define a set of four independent q-harmonic oscillator 

J+ = a h ,  J- = a&a,, 2J,= N,, - N2, (29) 

K+ = a;,a,, K -  = a&a,, 2K,= N3, - N4,. (30) 
Equation (23) can be transcribed in terms of the q-boson operators. Now, the four- 
dimensional q-analogue harmonic oscillator Hamiltonian is given by 

where [n]! = [ n ] [ n  - 1 3 . .  . [2][11. 

systems: ai, and a: with i = 1,2,3,4.  Then we have: 

where 

wg =(-Eq/2p)’” (32) 
E9 being the energy of a q-analogue of the hydrogen atom. The q-Hamiltonian operator 
%‘, is diagonal on the eigenstates In1),In2),In3),ln4),, and bas the eigenvalues 

4 

j = 1  
E q ( n l .  n2, n 3 ,  n , ) = f h q  ([n,+lI+[njI)=e’. . (33) 

According to (32), we can obtain the energy of a q-analogue of the hydrogen atom 

(34) 
-pe4 

2 h 2 [ t ~ , 4 = , ( [ n j + l ] + [ n j ] ) / 2 } ”  
E# = 

It is interesting to check how (34) is related to (13). This can be done by replacing 
the q-numbers in (34) by their equals from (21) (or (22)), subsequently taking the 
Tayler expansions of the hyperbolic (or trigonometric) functions. In the limit q +  1, 
(34) reduce to (13). In the case of real q, the energy spectrum of a q-analogue of the 
hydrogen atom is above that of the hydrogen atom. While q is a phase, the result is 
more complicated. 
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Equation (23) shows that the spectrum of a q-analogue of the hydrogen atom is 
subjected to the constraint condition 

In obtaining equation (35). we also have to consider the alternative expression of K,, 
KO in which the subscripts of the q-boson operators are exchanged 3 c* 4. According 
to equation (34), the spectrum of the q-analogue hydrogen atom with quantum number 
n ( n  = n,+n,+  1) can have several levels. If n is even, the number of levels is n 2 f 4  
and the degeneracy of each of the levels is four. If n is odd, the number of levels is 
the integral of n2/4 and one remainder, e.g. n = 3 having three levels, n = 5 having 
seven levels. In this case, the degeneracy of all levels, except that for one remainder 
being single, is four. The spectrum and degeneracy of a q-analogue of the hydrogen 
atom is different from that of the hydrogen atom. 
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